
Wroclaw University of Science and Technology, 2025-01-13

Optimization and
deployment of NN

Grzegorz Latosinski

ANTMICRO

Optimization and deployment of NN for IoT

• Founded in 2009

• Turning ideas into software-driven products

• Industrial IoT and embedded systems: AI/ML
in defense/security, mining, agriculture,
autonomous vehicles, robotics, aerospace,
industrial automation

• We use, develop, advocate open source

• Introducing new design methodologies
and workflows based on open source

OPEN SOURCE LEADERSHIP

We are members of the world’s leading open source organizations and initiatives.

Optimization and deployment of NN for IoT

WHAT DO WE DO?

It’s Open Source, see for yourself!

• How we code

▪ Antmicro GitHub (737 repos!)
github.com/antmicro

▪ Antmicro Open Source Portal
opensource.antmicro.com

• How we design hardware

▪ openhardware.antmicro.com

• Our blog

▪ blog.antmicro.com

Optimization and deployment of NN for IoT

https://github.com/antmicro
https://opensource.antmicro.com/
https://openhardware.antmicro.com/
https://blog.antmicro.com

ㅤCP1, WROCLAWㅤ

Baltyk

ㅤBALTYK, POZNANㅤ

ㅤCONCORDIA, POZNANㅤ

ㅤETERNUM, GDANSKㅤ

ㅤCITY GATE, GOTHENBURGㅤ

NEURAL NETWORKS DEPLOYMENT PROCESS

Optimization and deployment of NN for IoT / Neural Networks deployment process

DEEP LEARNING DEPLOYMENT PROCESS

Optimization and deployment of NN for IoT / Neural Networks deployment process

• Cloud platforms - GPU/TPU

• Desktop PCs - GPU/iGPU/CPU

• Single board/module computers

▫ CPU: Raspberry Pi boards (ARM), HiFive boards (RISC-V), …

▫ GPU/eGPU: NVIDIA Jetson platforms, Asus Tinkerboard

▫ Edge TPU: Google Coral

• External acceleration modules:

▫ Intel: Neural Compute Stick, Myriad

▫ Google: Google Coral TPUs (module or USB)

▫ Hailo AI accelerators

• FPGAs

• Open source accelerators:

▫ Apache VTA - https://github.com/apache/tvm-vta

▫ Kelvin - https://opensecura.googlesource.com/hw/kelvin/

• Microcontrollers

POSSIBLE TARGET PLATFORMS

Optimization and deployment of NN for IoT / Neural Networks deployment process

https://github.com/apache/tvm-vta
https://opensecura.googlesource.com/hw/kelvin/

• High memory demand

• High computational demand

• Size vs quality trade-off

• Frameworks for NN development and training are large
and memory demanding on their own

• Hardware does not support floating-point arithmetic, or
runs it extremely slow

WHY RUNNING DNN CAN BE
DIFFICULT?

Optimization and deployment of NN for IoT / Neural Networks deployment process

WHY RUNNING DNN LOCALLY?

• Cloud independence - solution is offline

• Security and privacy - no potentially
sensitive data is sent to a remote location

• Latency - passing data to the Cloud
significantly increases processing time

• Reliability - the network communication
is unreliable

• Scalability - in the long run, IoT-based
machine learning solutions are far more scalable
than centralized cloud solutions

• Miniaturization

• Cost and energy efficiency

Optimization and deployment of NN for IoT / Neural Networks deployment process

DEEP LEARNING DEPLOYMENT PROCESS

Optimization and deployment of NN for IoT / Neural Networks deployment process

MODEL COMPRESSION ALGORITHMS

Optimization and deployment of NN for IoT / Model compression algorithms

MODEL COMPRESSION ALGORITHMS

• Reasons for large sizes of models:

▫ High-precision weights

▫ Lower cost of imposing regularization techniques and other
overfitting-preventing strategies compared to several iterations of small
model development

• Possible fields of improvement:

▫ Lower number of bits per weight

▫ Removal of insignificant weights/tensors

▫ Making tensors compression-friendly

• Possible benefits:

▫ Smaller size in storage

▫ Smaller size in memory

▫ Faster inference

• Possible problems:

▫ Worse quality of predictions

▫ Slower inference

Optimization and deployment of NN for IoT / Model compression algorithms

MODEL COMPRESSION ALGORITHMS

• Quantization

• Pruning

• Knowledge distillation

• Clustering

• Low-rank approximation

• …

Optimization and deployment of NN for IoT / Model compression algorithms

QUANTIZATION

Optimization and deployment of NN for IoT / Quantization

FP32

QUANTIZATION

This is way too much bits, can we reduce it?

• Quantization is the process of reducing the
number of bits used to represent weights in the
neural network

• What is quantized?
▫ Weights

▫ Activations

• Target weights’ types:
▫ FP32 - (-)~1.17E-38…~3.4E+38, 6-9 significant decimal digits prec.

Optimization and deployment of NN for IoT / Quantization

FP32

FP16
QUANTIZATION

A little bit better, but still to much. Can we go lower?

• Quantization is the process of reducing the
number of bits used to represent weights in the
neural network

• What is quantized?
▫ Weights

▫ Activations

• Target weights’ types:
▫ FP32 - (-)~1.17E-38…~3.4E+38, 6-9 significant decimal digits prec.

▫ FP16 - (-)~5.96E-8…65504, 4 significant decimal digits precision

Optimization and deployment of NN for IoT / Quantization

FP32

FP16

INT8
QUANTIZATION

Nice, can we go lower?

• Quantization is the process of reducing the
number of bits used to represent weights in the
neural network

• What is quantized?
▫ Weights

▫ Activations

• Target weights’ types:
▫ FP32 - (-)~1.17E-38…~3.4E+38, 6-9 significant decimal digits prec.

▫ FP16 - (-)~5.96E-8…65504, 4 significant decimal digits precision

▫ INT8 - -128…127

Optimization and deployment of NN for IoT / Quantization

FP32

FP16

INT8

INT4

QUANTIZATION

Lower!

• Quantization is the process of reducing the
number of bits used to represent weights in the
neural network

• What is quantized?
▫ Weights

▫ Activations

• Target weights’ types:
▫ FP32 - (-)~1.17E-38…~3.4E+38, 6-9 significant decimal digits prec.

▫ FP16 - (-)~5.96E-8…65504, 4 significant decimal digits precision

▫ INT8 - -128…127

▫ INT4 - -8…7

Optimization and deployment of NN for IoT / Quantization

FP32

FP16

INT8

INT4

INT3

QUANTIZATION

Lower…?

• Quantization is the process of reducing the
number of bits used to represent weights in the
neural network

• What is quantized?
▫ Weights

▫ Activations

• Target weights’ types:
▫ FP32 - (-)~1.17E-38…~3.4E+38, 6-9 significant decimal digits prec.

▫ FP16 - (-)~5.96E-8…65504, 4 significant decimal digits precision

▫ INT8 - -128…127

▫ INT4 - -8…7

▫ INT3 - -4…3

Optimization and deployment of NN for IoT / Quantization

FP32

FP16

INT8

INT4

INT3

INT1

QUANTIZATION

• Quantization is the process of reducing the
number of bits used to represent weights in the
neural network

• What is quantized?
▫ Weights

▫ Activations

• Target weights’ types:
▫ FP32 - (-)~1.17E-38…~3.4E+38, 6-9 significant decimal digits prec.

▫ FP16 - (-)~5.96E-8…65504, 4 significant decimal digits precision

▫ INT8 - -128…127

▫ INT4 - -8…7

▫ INT3 - -4…3

▫ INT2/INT1.58/INT1 -
https://huggingface.co/blog/1_58_llm_extreme_quantization Perfection…?

Optimization and deployment of NN for IoT / Quantization

https://huggingface.co/blog/1_58_llm_extreme_quantization

QUANTIZING VALUES

• Uniform quantization - even distribution of values in
range from alpha to beta, most common quantization
approach

• Uniform quantization formula:

• Where:

▫ Int - function mapping real value to an integer (using
i.e. rounding or truncation)

▫ S - scaling factor (floating point value)

▫ Z - zero point (integer value)

• Hyperparameters to establish: scaling factor and
zero point

Optimization and deployment of NN for IoT / Quantization

POST-TRAINING QUANTIZATION

• Post-training quantization is the process of
computing quantization parameters (clipping
ranges/scale factors/zero points) based on a
fixed pre-trained model and a calibration dataset

• Model is not trained in the process

• Calibration dataset:

▫ Can be relatively small (much smaller than
training dataset)

▫ Should be representative (should be as diverse
as possible, i.e. providing at least few samples
for each class)

▫ Does not in general needs to be labeled (in
supervised learning)

Pre-trained model Calibration dataset

Calibration

Quantization

Quantized model

Optimization and deployment of NN for IoT / Quantization

POST-TRAINING QUANTIZATION

• Calibration is the process of determining the clipping
range, and based on this S and Z parameters

• Approaches:

▫ Min-max range (prone to outliers):

▫ Exponential moving average (EMA)

▫ Optimization-based methods

Optimization and deployment of NN for IoT / Quantization

OPTIMIZATION-BASED
POST-TRAINING QUANTIZATION

• Exponential moving average:

• Where:

▫ St is the current average value

▫ Xt is the current sample

▫ Decay is the smoothing factor telling how fast the
previous observations fade when exposed to new data

• In EMA approach, we collect ranges of values in each
activation tensor and compute 𝛂 and 𝜷 using EMA on
observed values with decay value close to 1.0

Optimization and deployment of NN for IoT / Quantization

OPTIMIZATION-BASED
POST-TRAINING QUANTIZATION

• Optimization-based methods:

• Where:

▫ R is the set of real values to find the conversion
parameters for (weights, activation values)

▫ 𝛂 and 𝜷 are the clipping range for real values

▫ is the set of dequantized R values using the
clipping range

▫ ℒ is the loss function for quantization parameters:

▪ Mean-squared error

▪ Cross-entropy

▪ Kullback-Leibler divergence (relative entropy)

Optimization and deployment of NN for IoT / Quantization

SYMMETRIC VS ASYMMETRIC QUANTIZATION

SYMMETRIC

• Z = 0

• -𝛂=𝜷
• The simplest case:

• rmax, rmin are either max and min values of weights, or
max and min observed values during calibration
process

• Widely adopted in weights quantization

• Performs well only if distribution of values is not
skewed, otherwise the symmetric clipping may
significantly reduce the mapping quality

ASYMMETRIC

• Z≠0

• -𝛂≠𝜷
• The simplest case:

• Adopted for activation values quantization

• More general, more flexible (due to the offset Z)

• Often has a significantly tighter clipping range, which
is important when the quantized values are
imbalanced, i.e. ReLU activation values

Optimization and deployment of NN for IoT / Quantization

Is there any benefit to using
symmetric quantization instead of

asymmetric quantization?

Optimization and deployment of NN for IoT / Quantization

SYMMETRIC VS ASYMMETRIC QUANTIZATION

SYMMETRIC

ASYMMETRIC

Optimization and deployment of NN for IoT / Quantization

SYMMETRIC VS ASYMMETRIC QUANTIZATION

SYMMETRIC

ASYMMETRIC

Can be pre-computed

Can’t be pre-computed

Optimization and deployment of NN for IoT / Quantization

FULLY QUANTIZED INFERENCE

• Quantizers are blocks that quantize or requantize the input
signals

• To prevent overflows, the convolution results and biases are
represented as 32-bit integers (sum of int8 products requires a
32-bit accumulator)

• TensorFlow Lite CONV_2D specification (check TFLite spec):
CONV_2D
 Input 0:
 data_type : int8
 range : [-128, 127]
 granularity: per-tensor
 Input 1 (Weight):
 data_type : int8
 range : [-127, 127]
 granularity: per-axis (dim = 0)
 restriction: zero_point = 0
 Input 2 (Bias):
 data_type : int32
 range : [int32_min, int32_max]
 granularity: per-axis
 restriction: (scale, zero_point) = (input0_scale * input1_scale[...], 0)
 Output 0:
 data_type : int8
 range : [-128, 127]
 granularity: per-tensor

input weights

conv

sum

biases

int8 int8

int32
int32

int32

int8

int8

quantize

act

Optimization and deployment of NN for IoT / Quantization

https://www.tensorflow.org/lite/performance/quantization_spec

FULLY_CONNECTED
 Input 0:

data_type : int8
range : [-128, 127]
granularity: per-tensor

 Input 1 (Weight):
data_type : int8
range : [-127, 127]
granularity: per-tensor
restriction: zero_point = 0

 Input 2 (Bias):
data_type : int32
range : [int32_min, int32_max]
granularity: per-tensor
restriction: (scale, zero_point) = (input0_scale * input1_scale[...],

0)
 Output 0:

data_type : int8
range : [-128, 127]
granularity: per-tensor

• Formula for quantized GEMM output:

• The scales are grouped into M:

• Since we operate on integers (INT8 in general, INT32
for intermediate results), M is represented as:

• Where multiplier is:

• And is later stored as:

• In the end, the res is scaled as follows:

FULLY QUANTIZED INFERENCE

Optimization and deployment of NN for IoT / Quantization

QUANTIZATION RESULTS TENSORFLOW MODEL OPTIMIZATION TOOLKIT

Model FP32 Accuracy FP32 size (MB) INT8 Accuracy INT8 size (MB)

MobileNetV2 0.8056691196511311 16 0.7756881984191878 5

MobileNetV3 small 0.8323793949304987 13 0.5622785500136277 4

ResNet50 0.7816843826655765 100 0.7835922594712456 26

InceptionV3 0.8833469610248024 94 0.8629054238212047 24

XCeption 0.8661760697737804 90 0.8195693649495776 24

Optimization and deployment of NN for IoT / Quantization

NETWORK PRUNING

Optimization and deployment of NN for IoT / Network pruning

OPTIMAL BRAIN DAMAGE

Optimization and deployment of NN for IoT / Network pruning

NETWORK PRUNING

• Pruning is a family of algorithms that remove the least
contributing parts of the network to a given task

• Formally, pruning is an algorithm that takes an input model

And produces a new model:

• Where:

▫ - a model architecture taking input x

▫ W - initial weights of the model

▫ - binary mask setting certain weights to 0

▫ W’ - fine-tuned weights

• What to prune?

▫ Weights

▫ Biases

▫ Activations

x

y

PRUNING
NEURONS

x

y

PRUNING
SYNAPSES

Optimization and deployment of NN for IoT / Network pruning

NETWORK PRUNING

• General flow is following:

▫ Train the model

▫ Analyse the network and create pruning masks

▫ Apply pruning masks - remove connections and/or neurons

▫ Fine-tune the model to recover from the pruning

Regular training

Prune Neurons

Weight Updates

Retraining

Optimization and deployment of NN for IoT / Network pruning

UNSTRUCTURED PRUNING

Optimization and deployment of NN for IoT / Unstructured pruning

LEVEL PRUNER
x

y

0.5 0.19 0.9

-0.3 -0.6 0.2

-0.1 0.93 0.1

-0.1 0.4 0.3

-0.4 0 -0.8

0.2 0.6 0.15

0.1 0.3

0.6 -0.2

-0.9 0.7

level=0.5
level=0.5

• Belongs to a family of magnitude-based pruners

• Fairly simple and not overly invasive approach to pruning

• We define % of least significant weights to remove (e.g.
50%)

• Algorithm:

▫ Sort the weights in the layer by their absolute values

▫ Mask the smallest-magnitude weights until the desired
sparsity is reached

• Usually requires little retraining

• Allows to compress the model, which is useful for storage

• Does not bring performance boost or size reduction at
runtime

Optimization and deployment of NN for IoT / Unstructured pruning

LEVEL PRUNER
x

y

0.5 0 0.9

0 -0.6 0

0 0.93 0

0 0.4 0

-0.4 0 -0.8

0 0.6 0

0 0

0.6 0

-0.9 0.7

level=0.5

Optimization and deployment of NN for IoT / Unstructured pruning

• Belongs to a family of magnitude-based pruners

• Fairly simple and not overly invasive approach to pruning

• We define % of least significant weights to remove (e.g.
50%)

• Algorithm:

▫ Sort the weights in the layer by their absolute values

▫ Mask the smallest-magnitude weights until the desired
sparsity is reached

• Usually requires little retraining

• Allows to compress the model, which is useful for storage

• Does not bring performance boost or size reduction at
runtime

AUTOMATED GRADUAL PRUNER

• Automated level pruner, working during training

• The sparsity curve follows this formula:

• Where:

▫ si - initial sparsity

▫ sf - final sparsity

▫ t0 - start time

▫ st - sparsity at time t

▫ n - number of steps

▫ 𝚫t - step size

• The pruning requires minimal setting of hyperparameters - most of the
setup happens automatically

• There may be a need to adjust the learning rate policy to prevent too
fast learning rate reduction, because the network may not recover from
pruning

Optimization and deployment of NN for IoT / Unstructured pruning

STRUCTURED PRUNING

Optimization and deployment of NN for IoT / Structured pruning

STRUCTURED PRUNING
• Pruning by neurons (fully connected layer)
• Pruning by filters (convolutional layer)
• Pruning by channels (convolutional layer)

x

y

• Significant memory and computation benefit
• Highly damaging for model’s performance
• Structured pruning strategies are actively researched

Optimization and deployment of NN for IoT / Structured pruning

L1/L2-RANKED STRUCTURE PRUNER

• Algorithm:

▫ For each filter, calculate the sum of its absolute kernel
weights

▫ Sort the filters by sj

▫ Prune m filters with the smallest sum values and their
corresponding feature maps. The kernels in the next
convolutional layer corresponding to the pruned feature
maps are also removed

▫ Create a new kernel matrix for both the i-th and (i+1)-th
layers, copy the remaining kernel weights to the new
model

▫ Fine-tune the new model until the quality of predictions is
satisfactory

Optimization and deployment of NN for IoT / Structured pruning

APOZ-RANKED STRUCTURE PRUNER

• APoZ - Average Percentage of Zeros

• APoZ is used to check the percentage of zero activations
of a neuron/filter (i.e. after ReLU)

• APoZ for a c-th channel in the i-th layer is computed as
follows:

• Where:

▫ Oc
(i) - output of the c-th channel in the i-th layer

▫ f - a function that equals 1 if the input is true, and 0
otherwise

▫ M - represents the number of elements in output feature
map

▫ N - represents the number of validation examples

Optimization and deployment of NN for IoT / Structured pruning

SECOND-ORDER DERIVATIVES FOR QUANTIZATION AND PRUNING

Optimization and deployment of NN for IoT / Second-order derivatives for optimizations

SECOND-ORDER DERIVATIVES FOR
OPTIMIZATION

• Optimal Brain Damage, 1989, Yann LeCun, John S. Denker, …

• Optimal Brain Surgeon, 1992, Babak Hassibi, David G. Stork

• The above papers revolved around pruning architectures of around
8000-20000 parameters (nowadays we have tens and hundreds of
billions of parameters)

• The aim of pruning is to remove parameters with small “saliency” -
parameters whose deletion will have the least effect on the network
error (or training error, as in case of above papers)

• In pruning, most of the methods demonstrated earlier revolved
around magnitude of the weight, which is an intuitive approximation
of saliency - authors of above papers claim that small weights often
are in fact necessary for low error

• Instead of magnitude, authors proposed pruning parameters based
on minimal increase in training error after removing them

• The research from the above papers resulted in the usage of
Hessian matrices, providing second-order derivatives

https://en.wikipedia.org/wiki/Hessian_matrix

Optimization and deployment of NN for IoT / Second-order derivatives for optimizations

https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf
https://en.wikipedia.org/wiki/Hessian_matrix

SECOND-DERIVATIVE ANALYSIS OF
WEIGHTS

• To address influence of the loss function by weights, one of the proposed ideas was
to construct a local model of the error function and predict the effect of perturbing
parameters in an analytic way

• They approximated the objective function L by a Taylor series shown to the right

• δW is the weight perturbation - change of weight from original value to 0

• This Taylor expansion has:

▫ First order term

▫ Second order term

▫ Third order term

• The objective function is nearly quadratic, the third term is negligible

• We assume that the network training has converged, the first term is also negligible

• OBD claimed that we can also assume that every parameter is independent, which
removes cross terms

• To sum up, we are only left with one component heavily based on the diagonal of the
Hessian matrix, which can be used as our importance measurement for parameters

Paper

Optimization and deployment of NN for IoT / Second-order derivatives for optimizations

https://proceedings.neurips.cc/paper/1989/hash/6c9882bbac1c7093bd25041881277658-Abstract.html

SECOND-ORDER DERIVATIVES FOR
OPTIMIZATION

• Optimal Brain Surgeon, 1992, Babak Hassibi, David G. Stork

• Example on the right demonstrates XOR network with two inputs (and bias as a
“third” input), 2 hidden neurons and 9 connections

• Hessian matrix is 9x9 matrix, where the darker the color, the lower the value is

• In network graph, the thicker the line, the higher magnitude the weight has (dashed
lines represent negative weights)

• Looking at magnitudes:

▫ The weight with the smallest magnitude is V3 - it would be removed

▫ After this, according to the paper, the network was unable to solve XOR problem

• Looking at Hessian:

▫ Components for hidden-to-output weights are high, especially for V1/V3 values

• The bottom left plot represents the two-dimensional slice of the nine-dimensional
error surface in the neighborhood of the starting point (state of weights before
pruning)

▫ OBS represents the point in the slice where U23 (picked by OBS) was zeroed
out

▫ Mag represents the point in the slice where V3 (picked by magnitude pruner)
was zeroed out

Optimization and deployment of NN for IoT / Second-order derivatives for optimizations

https://proceedings.neurips.cc/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf

SECOND-ORDER DERIVATIVES FOR
OPTIMIZATION

• Once LLMs emerged, the research regarding Hessian-based optimizations sped up, leading
to all kinds of parallelization, batching and simplification of formulas for Hessians

• Overall, during recent years, following algorithms had emerged for LLMs:

▫ Optimal Brain Compression/Optimal Brain Quantizer (OBC/OBQ) - 2022

▪ Introduces single framework that can tackle both pruning and quantization

▪ Picking next weight for pruning:

▪ Picking next weight for quantization:

▫ Gradient-based Post Training Quantization (GPTQ) - 2023

▪ https://github.com/AutoGPTQ/AutoGPTQ

▪ Speeds up quantization from 1 hour in OBQ to under 1 minute for ResNet-50

▫ SparseGPT - 2023

▪ https://github.com/IST-DASLab/sparsegpt

▪ Significantly improved the performance (and quality) of the OBC algorithm, giving
one-shot pruner for LLMs

▪ Has the similar algorithm as GPTQ, but prunes weights instead of quantizing them,
and also allows pruning subgroups of weights

GPTQ Paper

Optimization and deployment of NN for IoT / Second-order derivatives for optimizations

https://arxiv.org/pdf/2208.11580
https://arxiv.org/pdf/2210.17323
https://github.com/AutoGPTQ/AutoGPTQ
https://arxiv.org/pdf/2301.00774
https://github.com/IST-DASLab/sparsegpt

Model Number of parameters Original size (precision) GPTQ 4-bit

Mistral-7B-v0.1 7.24 B ~14.48 GB (BF16) 4.16 GB

Starcoder 15.5 B ~64 GB (BF16) 8.91 GB

Vicuna-13B 13 B ~26 GB 7.26 GB

Zephyr 7B 7.24 B ~14.5 GB (BF16) 4.16 GB

GPTQ COMPRESSION RESULTS

Optimization and deployment of NN for IoT / Second-order derivatives for optimizations

https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/TheBloke/Mistral-7B-v0.1-GPTQ
https://huggingface.co/bigcode/starcoder
https://huggingface.co/TheBloke/starcoder-GPTQ
https://huggingface.co/lmsys/vicuna-13b-v1.5
https://huggingface.co/TheBloke/stable-vicuna-13B-GPTQ
https://huggingface.co/HuggingFaceH4/zephyr-7b-beta
https://huggingface.co/TheBloke/zephyr-7B-beta-GPTQ

SEMI-STRUCTURED PRUNING

• N:M pruning - for M-element groups of weights we prune N weights

• Allows to create optimized representations, like value-index matrices

• Introduces quality reduction similar to unstructured pruning while allowing
storage and memory usage optimizations similar to structured pruning

• Can be executed efficiently on certain hardware

• Algorithms supporting N:M pruning are:

▫ Optimal Brain Surgeon (OBS, part of OBC)

▪ https://github.com/IST-DASLab/obc

▫ SparseGPT - an OBS-inspired pruning algorithm for LLMs

▪ https://github.com/IST-DASLab/sparsegpt

▪ Paper - SparseGPT: Massive Language Models Can Be Accurately
Pruned in One-Shot

• Both algorithms determine “significance” of weights using second-order
derivatives (similarly to GPTQ)

drows

dcols

dcols/2

drows

dcols/2

type: 4/8/16/32bit

type: 4/8/16/32bit type: 2bit

Optimization and deployment of NN for IoT / Second-order derivatives for optimizations

https://github.com/IST-DASLab/obc
https://github.com/IST-DASLab/sparsegpt
https://arxiv.org/abs/2301.00774
https://arxiv.org/abs/2301.00774

SIMULTANEOUS QUANTIZATION AND
PRUNING OF LLMS

• kenning.sparsegpt.sparsegpt - our implementation of the LLM simultaneous quantization and
pruning

• kenning/sparsity_aware_kernel/custom_ext/gptq/q_compressed_gemm.cu - vLLM kernel for
sparse matrix multiplication (both done as Master Thesis within our internship)

• NVIDIA support for semi-structured sparse matrices:

▫ NVIDIA supports 2:4 sparse matrix multiplication by dense matrix and vice versa (with various
input types), including their edge platforms (NVIDIA Jetson Orin platforms)

• Along with quantization down to 4 bits, the models can reach ~20-25% of their original size
without significant decrease in quality

• This, in turn, allows to deploy below models on smaller Jetson solutions, with even 4GB of
available RAM

• Results of pruning and quantizing the network using GPTQ and SparseGPT:

Model
Original size
(GiB)

GPTQ+Sparse
GPT size
(GiB)

% original size
Quantization/
pruning time

Mistral-7B 13.5 3.1 23% 1 hour

Phi-2 5.2 1.4 26% 20 minutes

Optimization and deployment of NN for IoT / Second-order derivatives for optimizations

https://github.com/antmicro/kenning/blob/main/kenning/sparsegpt/sparsegpt.py
https://github.com/antmicro/kenning/blob/main/kenning/sparsity_aware_kernel/custom_ext/gptq/q_compressed_gemm.cu
https://docs.google.com/file/d/18x-DpSnJYfIXYUe339cy5KzFKKyVHeoD/preview

MODEL COMPRESSION SUMMARY

Optimization and deployment of NN for IoT / Model compression summary

Model Quantization Unstructured/semi-structured pruning Structured pruning

Smaller storage size Always If compressed Always

Smaller memory footprint Always
If library/hardware supports efficient storage of

sparse matrices (e.g. NVIDIA GPUs since Ampere
architecture)

Always

Faster execution

Depends on target type and hardware - most of the
targets efficiently process INT8 values

NVIDIA GPUs support wide range of types

Not widely available as for now, there are libraries
like Blaze or Eigen for CPUs

NVIDIA since Ampere architecture has Sparse
Tensor Cores for unstructured pruning

Always

Requires retraining
For PTQ we don’t need retraining, only calibration
For LLMs, there are new quantization algorithms

such as GPTQ that have few-shot calibration

The zeroing of several weights (40-50%) requires
some retraining, but not too long

Removal of whole kernels/neurons requires heavy
retraining

Risk of significant decrease in quality Even with PTQ, the drop in quality (depending on
application) should be negligible

Right after pruning, the quality of the network is
severely decreased, but should require quite short

training to bring it back to original state

After pruning, we need to run a longer training to bring
back the original quality

Available optimization frameworks TensorFlow Model Optimization Toolkit, Distiller
(PyTorch), NNI (PyTorch), Kenning

TensorFlow Model Optimization Toolkit, NNI
(PyTorch), Kenning NNI (PyTorch), Kenning (experimental)

Available runtimes TensorFlow Lite, Apache TVM, … TensorFlow Lite (unoptimized), TensorRT (CUDA) Any framework that loads from PyTorch (ONNXRuntime,
Apache TVM, …)

MODEL COMPRESSION SUMMARY

Optimization and deployment of NN for IoT / Model compression summary

KNOWLEDGE DISTILLATION

Optimization and deployment of NN for IoT / Knowledge distillation

KNOWLEDGE OF LARGER MODELS

• The outputs of models are not one-hot vectors -
there are almost no zero values

• In the properly trained model, the vector output
element responsible for the appropriate class for the
input should have the highest value

• The vector elements for classes similar to the true
class usually have significantly higher values than
other elements, i.e. for car the classes like bus, truck,
motorcycle should have significantly higher values
than dog, apple or toilet

• It means that outputs from large models, in
comparison to ground truth, provide a crucial
information about the similarities between the input
and each class

Optimization and deployment of NN for IoT / Knowledge distillation

“SIMILAR CLASSES” ACCORDING TO
MOBILENETV2 (PET DATASET)

• English setter

• Top-5:

▫ English setter 0.994704

▫ English cocker spaniel 0.960606

▫ German shorthaired 0.897741

▫ Leonberger 0.812114

▫ Newfoundland 0.786800

Optimization and deployment of NN for IoT / Knowledge distillation

“SIMILAR CLASSES” ACCORDING TO
MOBILENETV2 (PET DATASET)

• Yorkshire terrier

• Top-5:

▫ Yorkshire terrier 0.998707

▫ Havanese 0.948308

▫ Pomeranian 0.871383

▫ Wheaten terrier 0.852712

▫ Scottish terrier 0.839262

Optimization and deployment of NN for IoT / Knowledge distillation

“SIMILAR CLASSES” ACCORDING TO
MOBILENETV2 (PET DATASET)

• Chihuahua

• Top-5:

▫ Chihuahua 0.976941

▫ Sphynx 0.926055

▫ Miniature pinscher 0.904815

▫ Siamese 0.779801

▫ Shiba inu 0.770530

Optimization and deployment of NN for IoT / Knowledge distillation

KNOWLEDGE DISTILLATION

• Knowledge distillation is the process of utilizing the
outputs for a given input from the larger model
(a teacher) in the process of training the smaller model
(a student)

• The similarities between objects reflected by teacher’s
output can be used in student’s training as generalization
hints:

▫ Features shared between objects will be promoted

▫ The reusability rate of kernels between classes of
similar objects should be higher

▫ The training process should converge faster and
lead to significantly better model

DATASET
STUDENT

MODEL

LOSS

INPUTS

STUDENT
PREDICTIONS

TEACHER
MODEL

INPUTS

TEACHER
PREDICTIONS

Optimization and deployment of NN for IoT / Knowledge distillation

Can we use the outputs from the
teacher model as is?

Optimization and deployment of NN for IoT / Knowledge distillation

DARK KNOWLEDGE

• The similarities between classes are useful during
training, but they can be also very misleading

• Using only or mostly the teacher’s knowledge
condemns the student to make the same mistakes
as the teacher

• That is why students should also get the data from
the dataset (libraries/resources)

Optimization and deployment of NN for IoT / Knowledge distillation

KNOWLEDGE DISTILLATION

DATASET
STUDENT

MODEL

SOFT
LABEL
LOSS

EXPECTED OUTPUTS

INPUTS

STUDENT
PREDICTIONS

TEACHER
MODEL

INPUTS

TEACHER
PREDICTIONS

HARD
LABEL
LOSS

STUDENT
PREDICTIONS

• Knowledge distillation is the process of utilizing the
outputs for a given input from the larger model (a
teacher) in the process of training the smaller model (a
student)

• The similarities between objects reflected by teacher’s
output can be used in student’s training as generalization
hints:

▫ Features shared between objects will be promoted

▫ The reusability rate of kernels between classes of
similar objects should be higher

▫ The training process should converge faster and lead
to significantly better model

• Teacher’s knowledge may also slightly reduce errors
coming from the dataset

Optimization and deployment of NN for IoT / Knowledge distillation

KNOWLEDGE DISTILLATION

DATASET
STUDENT

MODEL

SOFT
LABEL
LOSS

y

x

z
s

TEACHER
MODEL

x z
t

HARD
LABEL
LOSS

• In classic knowledge distillation, the loss is computed in the
following way:

• Where:

▫ L(x;W) - loss function for input x and current student weights W

▫ 𝜶 - ground truth cross entropy loss coefficient

▫ 𝜷 - teacher cross entropy loss coefficient (usually 𝜷 = 1 - 𝜶)

▫ 𝝈 - softmax function with temperature T

▫ zs - student output vector

▫ zt - teacher output vector

▫ 𝝉 - temperature for distillation soft labels, the higher the value, the
richer in information the soft-labels distribution will be

▫ H(y,𝝈(zs; T = 1)) - hard label loss

▫ H(𝝈(zt; T = 𝝉),𝝈(zs; T = 𝝉)) - soft label loss

z
s

Optimization and deployment of NN for IoT / Knowledge distillation

EFFICIENT AND LIGHTWEIGHT DNN
RUNTIMES

Optimization and deployment of NN for IoT / Efficient and lightweight DNN runtimes

NEURAL NETWORK INTERPRETER

• TensorFlow Lite

▫ Repository:
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite

▫ Documentation: https://www.tensorflow.org/lite

▫ Very small library size (~1MB default, ~300kB for most popular operations)

▫ Very small and efficient model format (flatbuffers)

▫ Highly flexible - allows:

▪ Enabling/disabling support for ops

▪ Easy implementation of new ops

▪ Easy delegation of ops to custom accelerators

• They use existing model formats and iterate over layers to process data

• They have per-layer optimized kernels

• Very flexible, with simple model replacement

• Less opportunities for interlayer or graph-wise optimizations

Optimization and deployment of NN for IoT / Efficient and lightweight DNN runtimes

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite
https://www.tensorflow.org/lite

NEURAL NETWORK COMPILERS

• Apache TVM (Tensor Virtual Machine)

▫ Homepage: https://tvm.apache.org/

▫ Repository: https://github.com/apache/tvm

• OpenXLA IREE

▫ Homepage: https://openxla.github.io/iree/

▫ Repository: https://github.com/openxla/iree

• They convert the model to a set of functions that are
later compiled to a binary form, either an application,
or shared library designed specifically for a given
model and hardware

• Both are based on LLVM project, where models are
converted to functional Intermediate Representation,
which is later subjected to optimizations

C

Fortran

Haskell

X86

PowerPC

ARM

Clang C/C++
frontend

llvm-gcc
frontend

GHC
frontend

LLVM
optimizer

X86
backend

PowerPC
backend

ARM
backendLLVM IR

Optimization and deployment of NN for IoT / Efficient and lightweight DNN runtimes

https://tvm.apache.org/
https://github.com/apache/tvm
https://openxla.github.io/iree/
https://github.com/openxla/iree

Model from Frameworks

Import (frontend)

IRModule

Target Translation (target)

runtime.Module (runtime)

Primitive-function scheduling
(relay/backend, te)

IRModule

TVM COMPILATION FLOW

tir.PrimFunc(tir)tir.PrimFunc(tir)tir.PrimFunc(tir)

relay.Function (relay)relay.Function (relay)

PackedFunc(runtime)PackedFunc(runtime)PackedFunc(runtime)

Relay Passes (relay/transform)

TIR Passes(tir/transform)

AutoTVM

contains

contains

containsKey data structure

Rule-based transformation (pass)

Search space and learning-based Transformation

Optimization and deployment of NN for IoT / Efficient and lightweight DNN runtimes

GEMM OPTIMIZATIONS

Optimization and deployment of NN for IoT / GEMM optimizations

A B C

for m in range(M):
 for k in range(K):
 for n in range(N):
 C[m, n] += A[m, k] * B[k,
n]

k j

ii

j

k

POSSIBLE GEMM OPTIMIZATIONS

• Loop permutations

A B C

k j

j

ii k

for m in range(M):
 for n in range(N):
 for k in range(K):
 C[m, n] += A[m, k] * B[k,
n]

Optimization and deployment of NN for IoT / GEMM optimizations

POSSIBLE GEMM OPTIMIZATIONS

• Loop permutations

• Blocking/tiling

Optimization and deployment of NN for IoT / GEMM optimizations

POSSIBLE GEMM OPTIMIZATIONS

8 CPU cycles

AVX: 1 CPU cycle

• Loop permutations

• Blocking/tiling

• Vectorization:

▫ x86 - AVX2, AVX512, … extensions

▫ ARM - Neon, SVE, … (CMSIS-NN library)

▫ RISC-V - V Extensions (MURISCV-NN library)

Optimization and deployment of NN for IoT / GEMM optimizations

https://github.com/ARM-software/CMSIS-NN
https://github.com/tum-ei-eda/muriscv-nn

POSSIBLE GEMM OPTIMIZATIONS
A B C

B

Typical B layout

Array packed B layout

• Loop permutations

• Blocking/tiling

• Vectorization:

▫ x86 - AVX2, AVX512, … extensions

▫ ARM - Neon, SVE, … (CMSIS-NN library)

▫ RISC-V - V Extensions (MURISCV-NN library)

• Array packing

Optimization and deployment of NN for IoT / GEMM optimizations

https://github.com/ARM-software/CMSIS-NN
https://github.com/tum-ei-eda/muriscv-nn

POSSIBLE GEMM OPTIMIZATIONS

C

THREAD #1

THREAD #2

• Loop permutations

• Blocking/tiling

• Vectorization:

▫ x86 - AVX2, AVX512, … extensions

▫ ARM - Neon, SVE, … (CMSIS-NN library)

▫ RISC-V - V Extensions (MURISCV-NN library)

• Array packing

• Threading

Optimization and deployment of NN for IoT / GEMM optimizations

https://github.com/ARM-software/CMSIS-NN
https://github.com/tum-ei-eda/muriscv-nn

POSSIBLE GEMM OPTIMIZATIONS

for m in range(M):
 for k in range(K):
 C[m, 0] += A[m, k] * B[k, 0]
 C[m, 1] += A[m, k] * B[k, 1]
 C[m, 2] += A[m, k] * B[k, 2]
 C[m, 3] += A[m, k] * B[k, 3]
 C[m, 4] += A[m, k] * B[k, 4]
 C[m, 5] += A[m, k] * B[k, 5]
 C[m, 6] += A[m, k] * B[k, 6]
 C[m, 7] += A[m, k] * B[k, 7]
 C[m, 8] += A[m, k] * B[k, 8]
 # ...

• Loop permutations

• Blocking/tiling

• Vectorization:

▫ x86 - AVX2, AVX512, … extensions

▫ ARM - Neon, SVE, … (CMSIS-NN library)

▫ RISC-V - V Extensions (MURISCV-NN library)

• Array packing

• Threading

• Unrolling

Optimization and deployment of NN for IoT / GEMM optimizations

https://github.com/ARM-software/CMSIS-NN
https://github.com/tum-ei-eda/muriscv-nn

POSSIBLE GEMM OPTIMIZATIONS

• Loop permutations

• Blocking/tiling

• Vectorization:

▫ x86 - AVX2, AVX512, … extensions

▫ ARM - Neon, SVE, … (CMSIS-NN library)

▫ RISC-V - V Extensions (MURISCV-NN library)

• Array packing

• Threading

• Unrolling

• Sparse matrix multiplication

▫ NVIDIA GPUs - Ampere+ architectures

▫ NVIDIA Jetson Orin platforms

• Dead code elimination, constants unfolding, …

Optimization and deployment of NN for IoT / GEMM optimizations

https://github.com/ARM-software/CMSIS-NN
https://github.com/tum-ei-eda/muriscv-nn

CONVOLUTION

Optimization and deployment of NN for IoT / Optimizations for convolution

NAIVE CONV2D IMPLEMENTATION

for filter in range(num_filters):
 for channel in range(input_channels):
 for out_h in range(output_height):
 for out_w in range(output_width):
 for k_h in range(kernel_height):
 for k_w in range(kernel_width):
 output[filter, out_h, out_w] += (
 kernel[filter, channel, k_h, k_w] * input[channel, out_h + k_h, out_w + k_w]
)

Optimization and deployment of NN for IoT / Optimizations for convolution

GEMM-BASED CONV2D
IMPLEMENTATION - IM2COL

• Lots of the hardware platforms accelerate GEMM
operations

• Also, there are lots of libraries that provide
well-optimized implementations of the GEMM

• It is possible to convert the convolution to GEMM

• With the available accelerations for GEMM
converting the convolution to GEMM is profitable

• To convert convolutions to GEMM, we need to
rearrange the data in feature maps and kernels

• The algorithm for this rearrangement is called im2col

• Created matrices introduce significant amount of
redundancy, but the execution time decrease
compensates the memory overhead

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a b c

d e f

g h i

I II

III IV

1

2

3

5

6

7

9

10

11

2

3

4

6

7

8

10

11

12

5

6

7

9

10

11

13

14

15

6

7

8

10

11

12

14

15

16

a b c d e f g h i I II III IV

Optimization and deployment of NN for IoT / Optimizations for convolution

WINOGRAD CONVOLUTION

• The minimal filtering algorithm for computing m outputs with an r-tap FIR filter F(m,r)
requires m+r-1 multiplications

• E.g. for F(2, 3) (2-element output, 3-element filter) we have 4-element input

• Standard algorithm uses 2*3=6 multiplications

• Using modified Toom-Cook algorithm, we can compute convolution as follows:

• This solution gives 4 multiplications instead of 6 - 1.5 speedup

• The 1D F(m,r) and F(n,s) algorithms can be nested to form minimal 2D algorithms for
computing m*n outputs with an r*s filter, requiring (m+r-1)*(n+s-1) multiplications

• Original convolution of 4x4 matrix by 3x3 kernel (to obtain 2x2 result) requires
3*3*2*2=36 multiplications

• Winograd implementation requires (3+2-1)*(3+2-1)=16 multiplications!

• This gives us 36/16=2.25 speedup!

• Winograd can be used for convolutions with small kernels (3x3, 5x5, 7x7)

Optimization and deployment of NN for IoT / Optimizations for convolution

1 2 3 4 a b c I II

1

2

3

2

3

4

I IIa b c

d(im2col)

g

F(2,3)

1 3 a

2 3 a b c

3 2 a b c

2 4 b

2

2

To compute Precomputed

m1 =

m2 =

m3 =

m4 =

NEURAL NETWORK DEPLOYMENT ECOSYSTEM

Optimization and deployment of NN for IoT / Kenning

NEURAL NETWORK DEPLOYMENT ECOSYSTEM

TRAINING OPTIMIZATION + RUNTIME

Optimization and deployment of NN for IoT / Kenning

How can we utilize various
optimizations sparsely scattered

across frameworks and runtimes?

Optimization and deployment of NN for IoT / Kenning

KENNING

• Repository: github.com/antmicro/kenning

• Documentation: antmicro.github.io/kenning

• Kenning is a Python library for implementing pipelines for
neural network optimization and deployment

• It aims towards providing wrappers for neural network
deployment steps that can be seamlessly combined into
pipelines regardless of underlying machine learning frameworks
and compilers

• It also provides a consistent means for benchmarking
models after applying certain optimizations and compilation
on target platform directly on hardware platform

Optimization and deployment of NN for IoT / Kenning

https://github.com/antmicro/kenning
https://antmicro.github.io/kenning/

KENNING FLOW EXAMPLE

• Model: MobileNetV2

• Dataset: Pet Dataset for dogs and cats breeds classification

• Optimizations:

▫ Full INT8 quantization with TensorFlow Lite

▫ Compilation of model for Jetson AGX Orin device:

▪ Target - x86 CPU with AVX2 vector extensions

• Runtime - execution using TVM-compiled model

Other possible configuration:

• Target host - CPU used to execute the model

▫ llvm -mtriple=aarch64-linux-gnu

• Target - GPU with CUDA cores, compute capability 8.7 and
CUDNN/CUBLAS execution

▫ cuda -arch=sm_87 -libs=cudnn,cublas

{
 "model_wrapper": {
 "type": "kenning.modelwrappers.TensorFlowPetDatasetMobileNetV2",
 "parameters": {
 "model_name": "mobilenetv2",
 "model_path": "./tensorflow_pet_dataset_mobilenetv2.h5"
 }
 },
 "dataset": {
 "type": "kenning.datasets.pet_dataset.PetDataset",
 "parameters": {
 "dataset_root": "./build/PetDataset"
 }
 },
 "optimizers": [
 {
 "type": "kenning.optimizers.tflite.TFLiteCompiler",
 "parameters": {
 "target": "int8",
 "compiled_model_path": "./build/int8.tflite",
 "inference_input_type": "int8",
 "inference_output_type": "int8"
 }
 },
 {
 "type": "kenning.optimizers.tvm.TVMCompiler",
 "parameters": {
 "target": "llvm -mcpu=core-avx2",
 "opt_level": 3,
 "conv2d_data_layout": "NCHW",
 "compiled_model_path": "./build/int8_tvm.tar"
 }
 }
],
 "runtime": {
 "type": "kenning.runtimes.tvm.TVMRuntime",
 "parameters": {
 "save_model_path": "./build/int8_tvm.tar"
 }
 }
}

Optimization and deployment of NN for IoT / Kenning

Model
Total params:
4,164,965
Trainable params:
1,906,981

Model accuracy
Speedup in
comparison to
native framework

Model size reduction
in comparison to
native framework

Native 0.805669119651131 1.00 1.00

TFLite FP32 0.805669119651131 2.12 1.97

TFLite INT8 0.775688198419187 0.39 7.02

TVM INT8 (TFLite
input)

0.775688198419187 5.58 3.43

TVM INT8 with
vector extensions
(TFLite input)

0.775688198419187 16.07 5.85

CPU DEPLOYMENT WITH VECTOR
EXTENSIONS (AVX2)

Optimization and deployment of NN for IoT / Kenning

KENNING - SUPPORTED PLATFORMS

• Supported hardware running Linux (Python API):

▫ CPUs: x86_64, ARM Cortex A, RISC-V (HiFive
Unmatched), …

▫ GPUs/eGPUs: NVIDIA GPUs, NVIDIA Jetson
platforms (Jetson Nano, Jetson AGX Xavier,
Jetson AGX Orin)

▫ TPUs: Google Coral

▫ …

• Bare-metal CPUs:

▫ Kenning Bare Metal IREE Runtime

• Zephyr-capable CPUs:

▫ Kenning Zephyr Runtime

Optimization and deployment of NN for IoT / Kenning

https://github.com/antmicro/kenning-bare-metal-iree-runtime
https://github.com/antmicro/kenning-zephyr-runtime

KENNING + ZEPHYR

• https://github.com/antmicro/kenning-zephyr-runtime

• A unified API for evaluating and deploying neural networks on
platforms supported by Zephyr (700+ boards)

• Provides:

▫ Kenning inference library - a configurable library that lets you
pick a specific implementation of the runtime and use it to
load the model and run it on target device

▫ Evaluation app - a Zephyr application for evaluating and
benchmarking models on target device

• Supported runtimes:

▫ TFLite Micro - https://github.com/tensorflow/tflite-micro

▫ microTVM

▫ IREE - https://github.com/iree-org/iree

Optimization and deployment of NN for IoT / Kenning

https://github.com/antmicro/kenning-zephyr-runtime
https://github.com/tensorflow/tflite-micro
https://github.com/iree-org/iree

SAMPLE INFERENCE LOOP
// ...
status_t status = STATUS_OK;
uint8_t *model_output = NULL;
size_t model_output_size = 0;

// initialize model
status = model_init();
RETURN_ON_ERROR(status, status);
// load model structure
status = model_load_struct((uint8_t *)&model_struct, sizeof(MlModel));
RETURN_ON_ERROR(status, status);
// load model weights
status = model_load_weights(model_data, model_data_len);
RETURN_ON_ERROR(status, status);
// allocate buffer for output;
model_get_output_size(&model_output_size);
model_output = malloc(model_output_size);

// inference loop
for (size_t batch_index = 0; batch_index < sizeof(data) / sizeof(data[0]); ++batch_index)
{
 status = model_load_input((uint8_t *)data[batch_index], sizeof(data[0]));
 RETURN_ON_ERROR(status, status);

 status = model_run();
 RETURN_ON_ERROR(status, status);

 status = model_get_output(model_output_size, model_output, NULL);
 RETURN_ON_ERROR(status, status);

 format_output(output_str, sizeof(output_str), model_output);
 LOG_INF("model output: %s", output_str);
}

Optimization and deployment of NN for IoT / Kenning

SAME APP, DIFFERENT MODEL EXECUTION

west build -p always -b stm32f746g_disco app -- -DEXTRA_CONF_FILE=tflite.conf

Optimization and deployment of NN for IoT / Kenning

SAME APP, DIFFERENT MODEL EXECUTION

west build -p always -b stm32f746g_disco app -- -DEXTRA_CONF_FILE=tvm.conf

Optimization and deployment of NN for IoT / Kenning

SAME APP, DIFFERENT HARDWARE

west build -p always -b nrf52840dongle app -- -DEXTRA_CONF_FILE=tvm.conf

Optimization and deployment of NN for IoT / Kenning

What if hardware is not available?

Optimization and deployment of NN for IoT / Kenning

RENODE

• Repository: https://github.com/renode/renode

• Antmicro’s open source emulation framework
allowing software developers to build, run and
test software w/o hardware

• Multinode, deterministic, built with automation
and testing in mind

• Configuration-oriented platform definitions

• Wide RISC-V support, with easy prototyping of
custom instructions

▫ Also ARM, Power, SPARC, …

• Support for writing simulation in Python

• Read more at about.renode.io

Optimization and deployment of NN for IoT / Kenning

https://github.com/renode/renode
https://about.renode.io

KENNING/RENODE SIMULATION

• Kenning and Renode simulation brings various benefits:

▫ Debugging and profiling on simulated device

▫ Testing whether AI application will run on target platform
without hardware

▫ Continuous Integration pipelines checking actual
application execution on simulated device with SoC,
sensors and other peripherals, testable with Robot
framework

▫ Co-development of hardware design and inference
library in a simulated environment with co-simulation of
accelerator design

▫ Testing of runtime implementations on various platforms
to check for hardware coverage

Optimization and deployment of NN for IoT / Kenning

https://docs.google.com/file/d/1L-ftk_zgHlqkBU5K0yhs7TrZ9noYx8Sk/preview

ENGINEERING INTERNSHIPS

Optimization and deployment of NN for IoT / Engineering internships

LOOKING FOR INTERNS

• Engineering internships

▫ ASIC/SoC Design

▫ Digital design/FPGA

▫ Hardware design

▫ Software

▫ AI

▫ C#

▫ C / Rust

▫ Cloud

▫ Backend

▫ Frontend

Optimization and deployment of NN for IoT / Engineering internships

ENGINEERING INTERNSHIPS

https://careers.antmicro.com/jobs/

Full list on our careers website

Optimization and deployment of NN for IoT / Engineering internships

https://careers.antmicro.com/jobs/

THANK YOU
FOR YOUR ATTENTION!

