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ANTMICRO

Optimization and deployment of NN for IoT

• Founded in 2009

• Turning ideas into software-driven products

• Industrial IoT and embedded systems: AI/ML 
in defense/security, mining, agriculture, 
autonomous vehicles, robotics, aerospace, 
industrial automation

• We use, develop, advocate open source

• Introducing new design methodologies 
and workflows based on open source



OPEN SOURCE LEADERSHIP

We are members of the world’s leading open source organizations and initiatives.
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WHAT DO WE DO?

It’s Open Source, see for yourself!

• How we code

▪ Antmicro GitHub (737 repos!)
github.com/antmicro

▪ Antmicro Open Source Portal 
opensource.antmicro.com

• How we design hardware 

▪ openhardware.antmicro.com

• Our blog

▪ blog.antmicro.com  
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NEURAL NETWORKS DEPLOYMENT PROCESS

Optimization and deployment of NN for IoT / Neural Networks deployment process



DEEP LEARNING DEPLOYMENT PROCESS

Optimization and deployment of NN for IoT / Neural Networks deployment process



• Cloud platforms - GPU/TPU

• Desktop PCs - GPU/iGPU/CPU

• Single board/module computers

▫ CPU: Raspberry Pi boards (ARM), HiFive boards (RISC-V), …

▫ GPU/eGPU: NVIDIA Jetson platforms, Asus Tinkerboard

▫ Edge TPU: Google Coral

• External acceleration modules:

▫ Intel: Neural Compute Stick, Myriad

▫ Google: Google Coral TPUs (module or USB)

▫ Hailo AI accelerators

• FPGAs

• Open source accelerators:

▫ Apache VTA - https://github.com/apache/tvm-vta

▫ Kelvin - https://opensecura.googlesource.com/hw/kelvin/ 

• Microcontrollers

POSSIBLE TARGET PLATFORMS

Optimization and deployment of NN for IoT / Neural Networks deployment process
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• High memory demand

• High computational demand

• Size vs quality trade-off

• Frameworks for NN development and training are large 
and memory demanding on their own

• Hardware does not support floating-point arithmetic, or 
runs it extremely slow

WHY RUNNING DNN CAN BE
DIFFICULT?

Optimization and deployment of NN for IoT / Neural Networks deployment process



WHY RUNNING DNN LOCALLY?

• Cloud independence - solution is offline

• Security and privacy - no potentially 
sensitive data is sent to a remote location

• Latency - passing data to the Cloud 
significantly increases processing time

• Reliability - the network communication 
is unreliable

• Scalability - in the long run, IoT-based 
machine learning solutions are far more scalable 
than centralized cloud solutions

• Miniaturization

• Cost and energy efficiency

Optimization and deployment of NN for IoT / Neural Networks deployment process



DEEP LEARNING DEPLOYMENT PROCESS
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MODEL COMPRESSION ALGORITHMS

Optimization and deployment of NN for IoT / Model compression algorithms



MODEL COMPRESSION ALGORITHMS

• Reasons for large sizes of models:

▫ High-precision weights 

▫ Lower cost of imposing regularization techniques and other 
overfitting-preventing strategies compared to several iterations of small 
model development

• Possible fields of improvement:

▫ Lower number of bits per weight

▫ Removal of insignificant weights/tensors

▫ Making tensors compression-friendly

• Possible benefits:

▫ Smaller size in storage

▫ Smaller size in memory

▫ Faster inference

• Possible problems:

▫ Worse quality of predictions

▫ Slower inference

Optimization and deployment of NN for IoT / Model compression algorithms



MODEL COMPRESSION ALGORITHMS

• Quantization

• Pruning

• Knowledge distillation

• Clustering

• Low-rank approximation

• …

Optimization and deployment of NN for IoT / Model compression algorithms



QUANTIZATION
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FP32

QUANTIZATION

This is way too much bits, can we reduce it?

• Quantization is the process of reducing the 
number of bits used to represent weights in the 
neural network

• What is quantized?
▫ Weights

▫ Activations

• Target weights’ types:
▫ FP32 - (-)~1.17E-38…~3.4E+38, 6-9 significant decimal digits prec.

Optimization and deployment of NN for IoT / Quantization



FP32

FP16
QUANTIZATION

A little bit better, but still to much. Can we go lower?

• Quantization is the process of reducing the 
number of bits used to represent weights in the 
neural network

• What is quantized?
▫ Weights

▫ Activations

• Target weights’ types:
▫ FP32 - (-)~1.17E-38…~3.4E+38, 6-9 significant decimal digits prec.

▫ FP16 - (-)~5.96E-8…65504, 4 significant decimal digits precision

Optimization and deployment of NN for IoT / Quantization



FP32

FP16

INT8
QUANTIZATION

Nice, can we go lower?

• Quantization is the process of reducing the 
number of bits used to represent weights in the 
neural network

• What is quantized?
▫ Weights

▫ Activations

• Target weights’ types:
▫ FP32 - (-)~1.17E-38…~3.4E+38, 6-9 significant decimal digits prec.

▫ FP16 - (-)~5.96E-8…65504, 4 significant decimal digits precision

▫ INT8 - -128…127

Optimization and deployment of NN for IoT / Quantization



FP32

FP16

INT8

INT4

QUANTIZATION

Lower!

• Quantization is the process of reducing the 
number of bits used to represent weights in the 
neural network

• What is quantized?
▫ Weights

▫ Activations

• Target weights’ types:
▫ FP32 - (-)~1.17E-38…~3.4E+38, 6-9 significant decimal digits prec.

▫ FP16 - (-)~5.96E-8…65504, 4 significant decimal digits precision

▫ INT8 - -128…127

▫ INT4 - -8…7

Optimization and deployment of NN for IoT / Quantization



FP32

FP16

INT8

INT4

INT3

QUANTIZATION

Lower…?

• Quantization is the process of reducing the 
number of bits used to represent weights in the 
neural network

• What is quantized?
▫ Weights

▫ Activations

• Target weights’ types:
▫ FP32 - (-)~1.17E-38…~3.4E+38, 6-9 significant decimal digits prec.

▫ FP16 - (-)~5.96E-8…65504, 4 significant decimal digits precision

▫ INT8 - -128…127

▫ INT4 - -8…7

▫ INT3 - -4…3

Optimization and deployment of NN for IoT / Quantization



FP32

FP16

INT8

INT4

INT3

INT1

QUANTIZATION

• Quantization is the process of reducing the 
number of bits used to represent weights in the 
neural network

• What is quantized?
▫ Weights

▫ Activations

• Target weights’ types:
▫ FP32 - (-)~1.17E-38…~3.4E+38, 6-9 significant decimal digits prec.

▫ FP16 - (-)~5.96E-8…65504, 4 significant decimal digits precision

▫ INT8 - -128…127

▫ INT4 - -8…7

▫ INT3 - -4…3

▫ INT2/INT1.58/INT1 - 
https://huggingface.co/blog/1_58_llm_extreme_quantization Perfection…?
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QUANTIZING VALUES

• Uniform quantization - even distribution of values in 
range from alpha to beta, most common quantization 
approach

• Uniform quantization formula:

• Where:

▫ Int - function mapping real value to an integer (using 
i.e. rounding or truncation)

▫ S - scaling factor (floating point value)

▫ Z - zero point (integer value)

• Hyperparameters to establish: scaling factor and 
zero point

Optimization and deployment of NN for IoT / Quantization



POST-TRAINING QUANTIZATION

• Post-training quantization is the process of 
computing quantization parameters (clipping 
ranges/scale factors/zero points) based on a 
fixed pre-trained model and a calibration dataset

• Model is not trained in the process

• Calibration dataset:

▫ Can be relatively small (much smaller than 
training dataset)

▫ Should be representative (should be as diverse 
as possible, i.e. providing at least few samples 
for each class)

▫ Does not in general needs to be labeled (in 
supervised learning)

Pre-trained model Calibration dataset

Calibration

Quantization

Quantized model
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POST-TRAINING QUANTIZATION

• Calibration is the process of determining the clipping 
range, and based on this S and Z parameters

• Approaches:

▫ Min-max range (prone to outliers):

▫ Exponential moving average (EMA)

▫ Optimization-based methods

Optimization and deployment of NN for IoT / Quantization



OPTIMIZATION-BASED
POST-TRAINING QUANTIZATION

• Exponential moving average:

• Where:

▫ St is the current average value

▫ Xt is the current sample

▫ Decay is the smoothing factor telling how fast the 
previous observations fade when exposed to new data

• In EMA approach, we collect ranges of values in each 
activation tensor and compute 𝛂 and 𝜷 using EMA on 
observed values with decay value close to 1.0

Optimization and deployment of NN for IoT / Quantization



OPTIMIZATION-BASED
POST-TRAINING QUANTIZATION

• Optimization-based methods:

• Where:

▫ R is the set of real values to find the conversion 
parameters for (weights, activation values)

▫ 𝛂 and 𝜷 are the clipping range for real values

▫             is the set of dequantized R values using the 
clipping range

▫ ℒ is the loss function for quantization parameters:

▪ Mean-squared error

▪ Cross-entropy

▪ Kullback-Leibler divergence (relative entropy)

Optimization and deployment of NN for IoT / Quantization



SYMMETRIC VS ASYMMETRIC QUANTIZATION

SYMMETRIC

• Z = 0

• -𝛂=𝜷
• The simplest case:

• rmax, rmin are either max and min values of weights, or 
max and min observed values during calibration 
process

• Widely adopted in weights quantization

• Performs well only if distribution of values is not 
skewed, otherwise the symmetric clipping may 
significantly reduce the mapping quality

ASYMMETRIC

• Z≠0

• -𝛂≠𝜷
• The simplest case:

• Adopted for activation values quantization

• More general, more flexible (due to the offset Z)

• Often has a significantly tighter clipping range, which 
is important when the quantized values are 
imbalanced, i.e. ReLU activation values

Optimization and deployment of NN for IoT / Quantization



Is there any benefit to using 
symmetric quantization instead of 

asymmetric quantization?

Optimization and deployment of NN for IoT / Quantization



SYMMETRIC VS ASYMMETRIC QUANTIZATION

SYMMETRIC

ASYMMETRIC

Optimization and deployment of NN for IoT / Quantization



SYMMETRIC VS ASYMMETRIC QUANTIZATION

SYMMETRIC

ASYMMETRIC

Can be pre-computed

Can’t be pre-computed

Optimization and deployment of NN for IoT / Quantization



FULLY QUANTIZED INFERENCE

• Quantizers are blocks that quantize or requantize the input 
signals

• To prevent overflows, the convolution results and biases are 
represented as 32-bit integers (sum of int8 products requires a 
32-bit accumulator)

• TensorFlow Lite CONV_2D specification (check TFLite spec):
CONV_2D
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Input 1 (Weight):
    data_type  : int8
    range      : [-127, 127]
    granularity: per-axis (dim = 0)
    restriction: zero_point = 0
  Input 2 (Bias):
    data_type  : int32
    range      : [int32_min, int32_max]
    granularity: per-axis
    restriction: (scale, zero_point) = (input0_scale * input1_scale[...], 0)
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor

input weights

conv

sum

biases

int8 int8

int32
int32

int32

int8

int8

quantize

act
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FULLY_CONNECTED
  Input 0:

data_type  : int8
range  : [-128, 127]
granularity: per-tensor

  Input 1 (Weight):
data_type  : int8
range  : [-127, 127]
granularity: per-tensor
restriction: zero_point = 0

  Input 2 (Bias):
data_type  : int32
range  : [int32_min, int32_max]
granularity: per-tensor
restriction: (scale, zero_point) = (input0_scale * input1_scale[...], 

0)
  Output 0:

data_type  : int8
range  : [-128, 127]
granularity: per-tensor

• Formula for quantized GEMM output:

• The scales are grouped into M:

• Since we operate on integers (INT8 in general, INT32 
for intermediate results), M is represented as:

• Where multiplier is:

• And is later stored as:

• In the end, the res is scaled as follows:

FULLY QUANTIZED INFERENCE

Optimization and deployment of NN for IoT / Quantization



QUANTIZATION RESULTS TENSORFLOW MODEL OPTIMIZATION TOOLKIT

Model FP32 Accuracy FP32 size (MB) INT8 Accuracy INT8 size (MB)

MobileNetV2 0.8056691196511311 16 0.7756881984191878 5

MobileNetV3 small 0.8323793949304987 13 0.5622785500136277 4

ResNet50 0.7816843826655765 100 0.7835922594712456 26

InceptionV3 0.8833469610248024 94 0.8629054238212047 24

XCeption 0.8661760697737804 90 0.8195693649495776 24

Optimization and deployment of NN for IoT / Quantization



NETWORK PRUNING
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OPTIMAL BRAIN DAMAGE
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NETWORK PRUNING

• Pruning is a family of algorithms that remove the least 
contributing parts of the network to a given task

• Formally, pruning is an algorithm that takes an input model

And produces a new model:

• Where:

▫            - a model architecture taking input x

▫ W - initial weights of the model

▫                        - binary mask setting certain weights to 0

▫ W’ - fine-tuned weights

• What to prune?

▫ Weights

▫ Biases

▫ Activations

x

y

PRUNING 
NEURONS

x

y

PRUNING 
SYNAPSES
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NETWORK PRUNING

• General flow is following:

▫ Train the model

▫ Analyse the network and create pruning masks

▫ Apply pruning masks - remove connections and/or neurons

▫ Fine-tune the model to recover from the pruning

Regular training

Prune Neurons

Weight Updates

Retraining

Optimization and deployment of NN for IoT / Network pruning



UNSTRUCTURED PRUNING
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LEVEL PRUNER
x

y

0.5 0.19 0.9

-0.3 -0.6 0.2

-0.1 0.93 0.1

-0.1 0.4 0.3

-0.4 0 -0.8

0.2 0.6 0.15

0.1 0.3

0.6 -0.2

-0.9 0.7

level=0.5
level=0.5

• Belongs to a family of magnitude-based pruners

• Fairly simple and not overly invasive approach to pruning

• We define % of least significant weights to remove (e.g. 
50%) 

• Algorithm:

▫ Sort the weights in the layer by their absolute values

▫ Mask the smallest-magnitude weights until the desired 
sparsity is reached

• Usually requires little retraining

• Allows to compress the model, which is useful for storage

• Does not bring performance boost or size reduction at 
runtime

Optimization and deployment of NN for IoT / Unstructured pruning



LEVEL PRUNER
x

y

0.5 0 0.9

0 -0.6 0

0 0.93 0

0 0.4 0

-0.4 0 -0.8

0 0.6 0

0 0

0.6 0

-0.9 0.7

level=0.5
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• Belongs to a family of magnitude-based pruners

• Fairly simple and not overly invasive approach to pruning

• We define % of least significant weights to remove (e.g. 
50%) 

• Algorithm:

▫ Sort the weights in the layer by their absolute values

▫ Mask the smallest-magnitude weights until the desired 
sparsity is reached

• Usually requires little retraining

• Allows to compress the model, which is useful for storage

• Does not bring performance boost or size reduction at 
runtime



AUTOMATED GRADUAL PRUNER

• Automated level pruner, working during training

• The sparsity curve follows this formula:

• Where:

▫ si - initial sparsity

▫ sf - final sparsity

▫ t0 - start time

▫ st - sparsity at time t

▫ n - number of steps

▫ 𝚫t - step size

• The pruning requires minimal setting of hyperparameters - most of the 
setup happens automatically

• There may be a need to adjust the learning rate policy to prevent too 
fast learning rate reduction, because the network may not recover from 
pruning

Optimization and deployment of NN for IoT / Unstructured pruning



STRUCTURED PRUNING

Optimization and deployment of NN for IoT / Structured pruning



STRUCTURED PRUNING
• Pruning by neurons (fully connected layer)
• Pruning by filters (convolutional layer)
• Pruning by channels (convolutional layer)

x

y

• Significant memory and computation benefit
• Highly damaging for model’s performance
• Structured pruning strategies are actively researched

Optimization and deployment of NN for IoT / Structured pruning



L1/L2-RANKED STRUCTURE PRUNER

• Algorithm:

▫ For each filter, calculate the sum of its absolute kernel 
weights

▫ Sort the filters by sj

▫ Prune m filters with the smallest sum values and their 
corresponding feature maps. The kernels in the next 
convolutional layer corresponding to the pruned feature 
maps are also removed

▫ Create a new kernel matrix for both the i-th and (i+1)-th 
layers, copy the remaining kernel weights to the new 
model

▫ Fine-tune the new model until the quality of predictions is 
satisfactory

Optimization and deployment of NN for IoT / Structured pruning



APOZ-RANKED STRUCTURE PRUNER

• APoZ - Average Percentage of Zeros

• APoZ is used to check the percentage of zero activations 
of a neuron/filter (i.e. after ReLU)

• APoZ for a c-th channel in the i-th layer is computed as 
follows:

• Where:

▫ Oc
(i) - output of the c-th channel in the i-th layer

▫ f - a function that equals 1 if the input is true, and 0 
otherwise

▫ M - represents the number of elements in output feature 
map

▫ N - represents the number of validation examples

Optimization and deployment of NN for IoT / Structured pruning



SECOND-ORDER DERIVATIVES FOR QUANTIZATION AND PRUNING
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SECOND-ORDER DERIVATIVES FOR 
OPTIMIZATION 

• Optimal Brain Damage, 1989, Yann LeCun, John S. Denker, …

• Optimal Brain Surgeon, 1992, Babak Hassibi, David G. Stork

• The above papers revolved around pruning architectures of around 
8000-20000 parameters (nowadays we have tens and hundreds of 
billions of parameters)

• The aim of pruning is to remove parameters with small “saliency” - 
parameters whose deletion will have the least effect on the network 
error (or training error, as in case of above papers)

• In pruning, most of the methods demonstrated earlier revolved 
around magnitude of the weight, which is an intuitive approximation 
of saliency - authors of above papers claim that small weights often 
are in fact necessary for low error

• Instead of magnitude, authors proposed pruning parameters based 
on minimal increase in training error after removing them

• The research from the above papers resulted in the usage of 
Hessian matrices, providing second-order derivatives

https://en.wikipedia.org/wiki/Hessian_matrix 

Optimization and deployment of NN for IoT / Second-order derivatives for optimizations

https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
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SECOND-DERIVATIVE ANALYSIS OF 
WEIGHTS

• To address influence of the loss function by weights, one of the proposed ideas was 
to construct a local model of the error function and predict the effect of perturbing 
parameters in an analytic way

• They approximated the objective function L by a Taylor series shown to the right

• δW is the weight perturbation - change of weight from original value to 0

• This Taylor expansion has:

▫ First order term

▫ Second order term

▫ Third order term

• The objective function is nearly quadratic, the third term is negligible

• We assume that the network training has converged, the first term is also negligible

• OBD claimed that we can also assume that every parameter is independent, which 
removes cross terms

• To sum up, we are only left with one component heavily based on the diagonal of the 
Hessian matrix, which can be used as our importance measurement for parameters

Paper

Optimization and deployment of NN for IoT / Second-order derivatives for optimizations

https://proceedings.neurips.cc/paper/1989/hash/6c9882bbac1c7093bd25041881277658-Abstract.html


SECOND-ORDER DERIVATIVES FOR 
OPTIMIZATION 

• Optimal Brain Surgeon, 1992, Babak Hassibi, David G. Stork

• Example on the right demonstrates XOR network with two inputs (and bias as a 
“third” input), 2 hidden neurons and 9 connections

• Hessian matrix is 9x9 matrix, where the darker the color, the lower the value is

• In network graph, the thicker the line, the higher magnitude the weight has (dashed 
lines represent negative weights)

• Looking at magnitudes:

▫ The weight with the smallest magnitude is V3 - it would be removed

▫ After this, according to the paper, the network was unable to solve XOR problem

• Looking at Hessian:

▫ Components for hidden-to-output weights are high, especially for V1/V3 values

• The bottom left plot represents the two-dimensional slice of the nine-dimensional 
error surface in the neighborhood of the starting point (state of weights before 
pruning)

▫ OBS represents the point in the slice where U23 (picked by OBS) was zeroed 
out

▫ Mag represents the point in the slice where V3 (picked by magnitude pruner) 
was zeroed out

Optimization and deployment of NN for IoT / Second-order derivatives for optimizations
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SECOND-ORDER DERIVATIVES FOR 
OPTIMIZATION 

• Once LLMs emerged, the research regarding Hessian-based optimizations sped up, leading 
to all kinds of parallelization, batching and simplification of formulas for Hessians

• Overall, during recent years, following algorithms had emerged for LLMs:

▫ Optimal Brain Compression/Optimal Brain Quantizer (OBC/OBQ) - 2022

▪ Introduces single framework that can tackle both pruning and quantization

▪ Picking next weight for pruning:

▪ Picking next weight for quantization:

▫ Gradient-based Post Training Quantization (GPTQ) - 2023

▪ https://github.com/AutoGPTQ/AutoGPTQ 

▪ Speeds up quantization from 1 hour in OBQ to under 1 minute for ResNet-50

▫ SparseGPT - 2023

▪ https://github.com/IST-DASLab/sparsegpt 

▪ Significantly improved the performance (and quality) of the OBC algorithm, giving 
one-shot pruner for LLMs

▪ Has the similar algorithm as GPTQ, but prunes weights instead of quantizing them, 
and also allows pruning subgroups of weights

GPTQ Paper

Optimization and deployment of NN for IoT / Second-order derivatives for optimizations

https://arxiv.org/pdf/2208.11580
https://arxiv.org/pdf/2210.17323
https://github.com/AutoGPTQ/AutoGPTQ
https://arxiv.org/pdf/2301.00774
https://github.com/IST-DASLab/sparsegpt


Model Number of parameters Original size (precision) GPTQ 4-bit

Mistral-7B-v0.1 7.24 B ~14.48 GB (BF16) 4.16 GB

Starcoder 15.5 B ~64 GB (BF16) 8.91 GB

Vicuna-13B 13 B ~26 GB 7.26 GB

Zephyr 7B 7.24 B ~14.5 GB (BF16) 4.16 GB

GPTQ COMPRESSION RESULTS

Optimization and deployment of NN for IoT / Second-order derivatives for optimizations

https://huggingface.co/mistralai/Mistral-7B-v0.1
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https://huggingface.co/bigcode/starcoder
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https://huggingface.co/TheBloke/zephyr-7B-beta-GPTQ


SEMI-STRUCTURED PRUNING

• N:M pruning - for M-element groups of weights we prune N weights

• Allows to create optimized representations, like value-index matrices

• Introduces quality reduction similar to unstructured pruning while allowing 
storage and memory usage optimizations similar to structured pruning

• Can be executed efficiently on certain hardware

• Algorithms supporting N:M pruning are:

▫ Optimal Brain Surgeon (OBS, part of OBC)

▪ https://github.com/IST-DASLab/obc 

▫ SparseGPT - an OBS-inspired pruning algorithm for LLMs

▪ https://github.com/IST-DASLab/sparsegpt 

▪ Paper - SparseGPT: Massive Language Models Can Be Accurately 
Pruned in One-Shot

• Both algorithms determine “significance” of weights using second-order 
derivatives (similarly to GPTQ)

drows

dcols

dcols/2

drows

dcols/2

type: 4/8/16/32bit

type: 4/8/16/32bit type: 2bit
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SIMULTANEOUS QUANTIZATION AND 
PRUNING OF LLMS

• kenning.sparsegpt.sparsegpt - our implementation of the LLM simultaneous quantization and 
pruning

• kenning/sparsity_aware_kernel/custom_ext/gptq/q_compressed_gemm.cu - vLLM kernel for 
sparse matrix multiplication (both done as Master Thesis within our internship)

• NVIDIA support for semi-structured sparse matrices:

▫ NVIDIA supports 2:4 sparse matrix multiplication by dense matrix and vice versa (with various 
input types), including their edge platforms (NVIDIA Jetson Orin platforms)

• Along with quantization down to 4 bits, the models can reach ~20-25% of their original size 
without significant decrease in quality

• This, in turn, allows to deploy below models on smaller Jetson solutions, with even 4GB of 
available RAM

• Results of pruning and quantizing the network using GPTQ and SparseGPT:

Model
Original size 
(GiB)

GPTQ+Sparse
GPT  size 
(GiB)

% original size
Quantization/
pruning time

Mistral-7B 13.5 3.1 23% 1 hour

Phi-2 5.2 1.4 26% 20 minutes

Optimization and deployment of NN for IoT / Second-order derivatives for optimizations

https://github.com/antmicro/kenning/blob/main/kenning/sparsegpt/sparsegpt.py
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https://docs.google.com/file/d/18x-DpSnJYfIXYUe339cy5KzFKKyVHeoD/preview
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Model Quantization Unstructured/semi-structured pruning Structured pruning

Smaller storage size Always If compressed Always

Smaller memory footprint Always
If library/hardware supports efficient storage of 

sparse matrices (e.g. NVIDIA GPUs since Ampere 
architecture)

Always

Faster execution

Depends on target type and hardware - most of the 
targets efficiently process INT8 values

NVIDIA GPUs support wide range of types

Not widely available as for now, there are libraries 
like Blaze or Eigen for CPUs

NVIDIA since Ampere architecture has Sparse 
Tensor Cores for unstructured pruning

Always

Requires retraining
For PTQ we don’t need retraining, only calibration
For LLMs, there are new quantization algorithms 

such as GPTQ that have few-shot calibration

The zeroing of several weights (40-50%) requires 
some retraining, but not too long

Removal of whole kernels/neurons requires heavy 
retraining

Risk of significant decrease in quality Even with PTQ, the drop in quality (depending on 
application) should be negligible

Right after pruning, the quality of the network is 
severely decreased, but should require quite short 

training to bring it back to original state

After pruning, we need to run a longer training to bring 
back the original quality

Available optimization frameworks TensorFlow Model Optimization Toolkit, Distiller 
(PyTorch), NNI (PyTorch), Kenning

TensorFlow Model Optimization Toolkit, NNI 
(PyTorch), Kenning NNI (PyTorch), Kenning (experimental)

Available runtimes TensorFlow Lite, Apache TVM, … TensorFlow Lite (unoptimized), TensorRT (CUDA) Any framework that loads from PyTorch (ONNXRuntime, 
Apache TVM, …)

MODEL COMPRESSION SUMMARY
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KNOWLEDGE DISTILLATION
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KNOWLEDGE OF LARGER MODELS

• The outputs of models are not one-hot vectors - 
there are almost no zero values

• In the properly trained model, the vector output 
element responsible for the appropriate class for the 
input should have the highest value

• The vector elements for classes similar to the true 
class usually have significantly higher values than 
other elements, i.e. for car the classes like bus, truck, 
motorcycle should have significantly higher values 
than dog, apple or toilet

• It means that outputs from large models, in 
comparison to ground truth, provide a crucial 
information about the similarities between the input 
and each class
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“SIMILAR CLASSES” ACCORDING TO 
MOBILENETV2 (PET DATASET)

• English setter

• Top-5:

▫ English setter 0.994704

▫ English cocker spaniel 0.960606

▫ German shorthaired 0.897741

▫ Leonberger 0.812114

▫ Newfoundland 0.786800

Optimization and deployment of NN for IoT / Knowledge distillation



“SIMILAR CLASSES” ACCORDING TO 
MOBILENETV2 (PET DATASET)

• Yorkshire terrier

• Top-5:

▫ Yorkshire terrier 0.998707

▫ Havanese 0.948308

▫ Pomeranian 0.871383

▫ Wheaten terrier 0.852712

▫ Scottish terrier 0.839262

Optimization and deployment of NN for IoT / Knowledge distillation



“SIMILAR CLASSES” ACCORDING TO 
MOBILENETV2 (PET DATASET)

• Chihuahua

• Top-5:

▫ Chihuahua 0.976941

▫ Sphynx 0.926055

▫ Miniature pinscher 0.904815

▫ Siamese 0.779801

▫ Shiba inu 0.770530

Optimization and deployment of NN for IoT / Knowledge distillation



KNOWLEDGE DISTILLATION

• Knowledge distillation is the process of utilizing the 
outputs for a given input from the larger model 
(a teacher) in the process of training the smaller model 
(a student)

• The similarities between objects reflected by teacher’s 
output can be used in student’s training as generalization 
hints:

▫ Features shared between objects will be promoted

▫ The reusability rate of kernels between classes of 
similar objects should be higher

▫ The training process should converge faster and 
lead to significantly better model

DATASET
STUDENT

MODEL

LOSS 

INPUTS

STUDENT
PREDICTIONS

TEACHER
MODEL

INPUTS

TEACHER
PREDICTIONS
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Can we use the outputs from the 
teacher model as is?
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DARK KNOWLEDGE

• The similarities between classes are useful during 
training, but they can be also very misleading

• Using only or mostly the teacher’s knowledge 
condemns the student to make the same mistakes 
as the teacher

• That is why students should also get the data from 
the dataset (libraries/resources)
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KNOWLEDGE DISTILLATION

DATASET
STUDENT

MODEL

SOFT
LABEL
LOSS 

EXPECTED OUTPUTS

INPUTS

STUDENT
PREDICTIONS

TEACHER
MODEL

INPUTS

TEACHER
PREDICTIONS

HARD 
LABEL
LOSS 

STUDENT
PREDICTIONS

• Knowledge distillation is the process of utilizing the 
outputs for a given input from the larger model (a 
teacher) in the process of training the smaller model (a 
student)

• The similarities between objects reflected by teacher’s 
output can be used in student’s training as generalization 
hints:

▫ Features shared between objects will be promoted

▫ The reusability rate of kernels between classes of 
similar objects should be higher

▫ The training process should converge faster and lead 
to significantly better model

• Teacher’s knowledge may also slightly reduce errors 
coming from the dataset
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KNOWLEDGE DISTILLATION

DATASET
STUDENT

MODEL

SOFT
LABEL
LOSS 

y

x

z
s

TEACHER
MODEL

x z
t

HARD 
LABEL
LOSS 

• In classic knowledge distillation, the loss is computed in the 
following way:

• Where:

▫ L(x;W) - loss function for input x and current student weights W

▫ 𝜶 - ground truth cross entropy loss coefficient

▫ 𝜷 - teacher cross entropy loss coefficient (usually 𝜷 = 1 - 𝜶)

▫ 𝝈 - softmax function with temperature T

▫ zs - student output vector

▫ zt - teacher output vector

▫ 𝝉 - temperature for distillation soft labels, the higher the value, the 
richer in information the soft-labels distribution will be

▫ H(y,𝝈(zs; T = 1)) - hard label loss

▫ H(𝝈(zt; T = 𝝉),𝝈(zs; T = 𝝉)) - soft label loss

z
s
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EFFICIENT AND LIGHTWEIGHT DNN 
RUNTIMES
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NEURAL NETWORK INTERPRETER

• TensorFlow Lite

▫ Repository: 
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite  

▫ Documentation: https://www.tensorflow.org/lite

▫ Very small library size (~1MB default, ~300kB for most popular operations)

▫ Very small and efficient model format (flatbuffers)

▫ Highly flexible - allows:

▪ Enabling/disabling support for ops

▪ Easy implementation of new ops

▪ Easy delegation of ops to custom accelerators

• They use existing model formats and iterate over layers to process data

• They have per-layer optimized kernels

• Very flexible, with simple model replacement

• Less opportunities for interlayer or graph-wise optimizations

Optimization and deployment of NN for IoT / Efficient and lightweight DNN runtimes
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NEURAL NETWORK COMPILERS

• Apache TVM (Tensor Virtual Machine)

▫ Homepage: https://tvm.apache.org/ 

▫ Repository: https://github.com/apache/tvm 

• OpenXLA IREE

▫ Homepage: https://openxla.github.io/iree/ 

▫ Repository: https://github.com/openxla/iree

• They convert the model to a set of functions that are 
later compiled to a binary form, either an application, 
or shared library designed specifically for a given 
model and hardware

• Both are based on LLVM project, where models are 
converted to functional Intermediate Representation, 
which is later subjected to optimizations

C

Fortran

Haskell

X86

PowerPC

ARM

Clang C/C++ 
frontend

llvm-gcc 
frontend

GHC 
frontend

LLVM 
optimizer

X86 
backend

PowerPC 
backend

ARM 
backendLLVM IR
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Model from Frameworks

Import (frontend)

IRModule

Target Translation (target)

runtime.Module (runtime)

Primitive-function scheduling 
(relay/backend, te)

IRModule

TVM COMPILATION FLOW

tir.PrimFunc(tir)tir.PrimFunc(tir)tir.PrimFunc(tir)

relay.Function (relay)relay.Function (relay)

PackedFunc(runtime)PackedFunc(runtime)PackedFunc(runtime)

Relay Passes (relay/transform)

TIR Passes(tir/transform)

AutoTVM

contains

contains

containsKey data structure

Rule-based transformation (pass)

Search space and learning-based Transformation
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GEMM OPTIMIZATIONS
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A B C

for m in range(M):
    for k in range(K):
        for n in range(N):
            C[m, n] += A[m, k] * B[k,  
n]

k j

ii

j

k

POSSIBLE GEMM OPTIMIZATIONS

• Loop permutations

A B C

k j

j

ii k

for m in range(M):
    for n in range(N):
        for k in range(K):
            C[m, n] += A[m, k] * B[k,  
n]
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POSSIBLE GEMM OPTIMIZATIONS

• Loop permutations

• Blocking/tiling

Optimization and deployment of NN for IoT / GEMM optimizations



POSSIBLE GEMM OPTIMIZATIONS

8 CPU cycles

AVX: 1 CPU cycle

• Loop permutations

• Blocking/tiling

• Vectorization:

▫ x86 - AVX2, AVX512, … extensions

▫ ARM - Neon, SVE, …  (CMSIS-NN library)

▫ RISC-V - V Extensions (MURISCV-NN library)

Optimization and deployment of NN for IoT / GEMM optimizations
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POSSIBLE GEMM OPTIMIZATIONS
A B C

B

Typical B layout

Array packed B layout

• Loop permutations

• Blocking/tiling

• Vectorization:

▫ x86 - AVX2, AVX512, … extensions

▫ ARM - Neon, SVE, …  (CMSIS-NN library)

▫ RISC-V - V Extensions (MURISCV-NN library)

• Array packing

Optimization and deployment of NN for IoT / GEMM optimizations
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POSSIBLE GEMM OPTIMIZATIONS

C

THREAD #1

THREAD #2

• Loop permutations

• Blocking/tiling

• Vectorization:

▫ x86 - AVX2, AVX512, … extensions

▫ ARM - Neon, SVE, …  (CMSIS-NN library)

▫ RISC-V - V Extensions (MURISCV-NN library)

• Array packing

• Threading

Optimization and deployment of NN for IoT / GEMM optimizations
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POSSIBLE GEMM OPTIMIZATIONS

for m in range(M):
    for k in range(K):
        C[m, 0] += A[m, k] * B[k, 0]
        C[m, 1] += A[m, k] * B[k, 1]
        C[m, 2] += A[m, k] * B[k, 2]
        C[m, 3] += A[m, k] * B[k, 3]
        C[m, 4] += A[m, k] * B[k, 4]
        C[m, 5] += A[m, k] * B[k, 5]
        C[m, 6] += A[m, k] * B[k, 6]
        C[m, 7] += A[m, k] * B[k, 7]
        C[m, 8] += A[m, k] * B[k, 8]
        # ...

• Loop permutations

• Blocking/tiling

• Vectorization:

▫ x86 - AVX2, AVX512, … extensions

▫ ARM - Neon, SVE, …  (CMSIS-NN library)

▫ RISC-V - V Extensions (MURISCV-NN library)

• Array packing

• Threading

• Unrolling

Optimization and deployment of NN for IoT / GEMM optimizations
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POSSIBLE GEMM OPTIMIZATIONS

• Loop permutations

• Blocking/tiling

• Vectorization:

▫ x86 - AVX2, AVX512, … extensions

▫ ARM - Neon, SVE, …  (CMSIS-NN library)

▫ RISC-V - V Extensions (MURISCV-NN library)

• Array packing

• Threading

• Unrolling

• Sparse matrix multiplication

▫ NVIDIA GPUs - Ampere+ architectures

▫ NVIDIA Jetson Orin platforms

• Dead code elimination, constants unfolding, …

Optimization and deployment of NN for IoT / GEMM optimizations

https://github.com/ARM-software/CMSIS-NN
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CONVOLUTION
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NAIVE CONV2D IMPLEMENTATION

for filter in range(num_filters):
    for channel in range(input_channels):
        for out_h in range(output_height):
            for out_w in range(output_width):
                for k_h in range(kernel_height):
                    for k_w in range(kernel_width):
                        output[filter, out_h, out_w] += (
                            kernel[filter, channel, k_h, k_w] * input[channel, out_h + k_h, out_w + k_w]
                        )

Optimization and deployment of NN for IoT / Optimizations for convolution



GEMM-BASED CONV2D 
IMPLEMENTATION - IM2COL

• Lots of the hardware platforms accelerate GEMM 
operations

• Also, there are lots of libraries that provide 
well-optimized implementations of the GEMM

• It is possible to convert the convolution to GEMM

• With the available accelerations for GEMM 
converting the convolution to GEMM is profitable

• To convert convolutions to GEMM, we need to 
rearrange the data in feature maps and kernels

• The algorithm for this rearrangement is called im2col

• Created matrices introduce significant amount of 
redundancy, but the execution time decrease 
compensates the memory overhead
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WINOGRAD CONVOLUTION

• The minimal filtering algorithm for computing m outputs with an r-tap FIR filter F(m,r) 
requires m+r-1 multiplications

• E.g. for F(2, 3) (2-element output, 3-element filter) we have 4-element input

• Standard algorithm uses 2*3=6 multiplications

• Using modified Toom-Cook algorithm, we can compute convolution as follows:

• This solution gives 4 multiplications instead of 6 - 1.5 speedup

• The 1D F(m,r) and F(n,s) algorithms can be nested to form minimal 2D algorithms for 
computing m*n outputs with an r*s filter, requiring (m+r-1)*(n+s-1) multiplications

• Original convolution of 4x4 matrix by 3x3 kernel (to obtain 2x2 result) requires 
3*3*2*2=36 multiplications

• Winograd implementation requires (3+2-1)*(3+2-1)=16 multiplications!

• This gives us 36/16=2.25 speedup!

• Winograd can be used for convolutions with small kernels (3x3, 5x5, 7x7)

Optimization and deployment of NN for IoT / Optimizations for convolution
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NEURAL NETWORK DEPLOYMENT ECOSYSTEM
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NEURAL NETWORK DEPLOYMENT ECOSYSTEM

TRAINING OPTIMIZATION + RUNTIME

Optimization and deployment of NN for IoT / Kenning



How can we utilize various 
optimizations sparsely scattered 

across frameworks and runtimes?

Optimization and deployment of NN for IoT / Kenning



KENNING

• Repository: github.com/antmicro/kenning 

• Documentation: antmicro.github.io/kenning 

• Kenning is a Python library for implementing pipelines for 
neural network optimization and deployment

• It aims towards providing wrappers for neural network 
deployment steps that can be seamlessly combined into 
pipelines regardless of underlying machine learning frameworks 
and compilers

• It also provides a consistent means for benchmarking 
models after applying certain optimizations and compilation 
on target platform directly on hardware platform

Optimization and deployment of NN for IoT / Kenning

https://github.com/antmicro/kenning
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KENNING FLOW EXAMPLE

• Model: MobileNetV2

• Dataset: Pet Dataset for dogs and cats breeds classification

• Optimizations:

▫ Full INT8 quantization with TensorFlow Lite

▫ Compilation of model for Jetson AGX Orin device:

▪ Target - x86 CPU with AVX2 vector extensions

• Runtime - execution using TVM-compiled model

Other possible configuration:

• Target host - CPU used to execute the model

▫ llvm -mtriple=aarch64-linux-gnu

• Target - GPU with CUDA cores, compute capability 8.7 and 
CUDNN/CUBLAS execution

▫ cuda -arch=sm_87 -libs=cudnn,cublas

{
  "model_wrapper": {
    "type": "kenning.modelwrappers.TensorFlowPetDatasetMobileNetV2",
    "parameters": {
      "model_name": "mobilenetv2",
      "model_path": "./tensorflow_pet_dataset_mobilenetv2.h5"
    }
  },
  "dataset": {
    "type": "kenning.datasets.pet_dataset.PetDataset",
    "parameters": {
      "dataset_root": "./build/PetDataset"
    }
  },
  "optimizers": [
    {
      "type": "kenning.optimizers.tflite.TFLiteCompiler",
      "parameters": {
        "target": "int8",
        "compiled_model_path": "./build/int8.tflite",
        "inference_input_type": "int8",
        "inference_output_type": "int8"
      }
    },
    {
      "type": "kenning.optimizers.tvm.TVMCompiler",
      "parameters": {
        "target": "llvm -mcpu=core-avx2",
        "opt_level": 3,
        "conv2d_data_layout": "NCHW",
        "compiled_model_path": "./build/int8_tvm.tar"
      }
    }
  ],
  "runtime": {
    "type": "kenning.runtimes.tvm.TVMRuntime",
    "parameters": {
      "save_model_path": "./build/int8_tvm.tar"
    }
  }
}
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Model
Total params: 
4,164,965
Trainable params: 
1,906,981

Model accuracy
Speedup in 
comparison to 
native framework

Model size reduction 
in comparison to 
native framework

Native 0.805669119651131 1.00 1.00

TFLite FP32 0.805669119651131 2.12 1.97

TFLite INT8 0.775688198419187 0.39 7.02

TVM INT8 (TFLite 
input)

0.775688198419187 5.58 3.43

TVM INT8 with 
vector extensions 
(TFLite input)

0.775688198419187 16.07 5.85

CPU DEPLOYMENT WITH VECTOR 
EXTENSIONS (AVX2)

Optimization and deployment of NN for IoT / Kenning



KENNING - SUPPORTED PLATFORMS

• Supported hardware running Linux (Python API):

▫ CPUs: x86_64, ARM Cortex A, RISC-V (HiFive 
Unmatched), …

▫ GPUs/eGPUs: NVIDIA GPUs, NVIDIA Jetson 
platforms (Jetson Nano, Jetson AGX Xavier, 
Jetson AGX Orin)

▫ TPUs: Google Coral

▫ …

• Bare-metal CPUs:

▫ Kenning Bare Metal IREE Runtime 

• Zephyr-capable CPUs:

▫ Kenning Zephyr Runtime 

Optimization and deployment of NN for IoT / Kenning
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KENNING + ZEPHYR

• https://github.com/antmicro/kenning-zephyr-runtime 

• A unified API for evaluating and deploying neural networks on 
platforms supported by Zephyr (700+ boards)

• Provides:

▫ Kenning inference library - a configurable library that lets you 
pick a specific implementation of the runtime and use it to 
load the model and run it on target device

▫ Evaluation app - a Zephyr application for evaluating and 
benchmarking models on target device

• Supported runtimes:

▫ TFLite Micro - https://github.com/tensorflow/tflite-micro 

▫ microTVM

▫ IREE - https://github.com/iree-org/iree 

Optimization and deployment of NN for IoT / Kenning

https://github.com/antmicro/kenning-zephyr-runtime
https://github.com/tensorflow/tflite-micro
https://github.com/iree-org/iree


SAMPLE INFERENCE LOOP
// ...
status_t status = STATUS_OK;
uint8_t *model_output = NULL;
size_t model_output_size = 0;

// initialize model
status = model_init();
RETURN_ON_ERROR(status, status);
// load model structure
status = model_load_struct((uint8_t *)&model_struct, sizeof(MlModel));
RETURN_ON_ERROR(status, status);
// load model weights
status = model_load_weights(model_data, model_data_len);
RETURN_ON_ERROR(status, status);
// allocate buffer for output;
model_get_output_size(&model_output_size);
model_output = malloc(model_output_size);

// inference loop
for (size_t batch_index = 0; batch_index < sizeof(data) / sizeof(data[0]); ++batch_index)
{
    status = model_load_input((uint8_t *)data[batch_index], sizeof(data[0]));
    RETURN_ON_ERROR(status, status);

    status = model_run();
    RETURN_ON_ERROR(status, status);

    status = model_get_output(model_output_size, model_output, NULL);
    RETURN_ON_ERROR(status, status);

    format_output(output_str, sizeof(output_str), model_output);
    LOG_INF("model output: %s", output_str);
}
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SAME APP, DIFFERENT MODEL EXECUTION

west build -p always -b stm32f746g_disco app -- -DEXTRA_CONF_FILE=tflite.conf

Optimization and deployment of NN for IoT / Kenning



SAME APP, DIFFERENT MODEL EXECUTION

west build -p always -b stm32f746g_disco app -- -DEXTRA_CONF_FILE=tvm.conf

Optimization and deployment of NN for IoT / Kenning



SAME APP, DIFFERENT HARDWARE

west build -p always -b nrf52840dongle app -- -DEXTRA_CONF_FILE=tvm.conf

Optimization and deployment of NN for IoT / Kenning



What if hardware is not available?
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RENODE

• Repository: https://github.com/renode/renode 

• Antmicro’s open source emulation framework 
allowing software developers to build, run and 
test software w/o hardware

• Multinode, deterministic, built with automation 
and testing in mind

• Configuration-oriented platform definitions

• Wide RISC-V support, with easy prototyping of 
custom instructions

▫ Also ARM, Power, SPARC, …

• Support for writing simulation in Python

• Read more at about.renode.io

Optimization and deployment of NN for IoT / Kenning
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KENNING/RENODE SIMULATION

• Kenning and Renode simulation brings various benefits:

▫ Debugging and profiling on simulated device

▫ Testing whether AI application will run on target platform 
without hardware

▫ Continuous Integration pipelines checking actual 
application execution on simulated device with SoC, 
sensors and other peripherals, testable with Robot 
framework

▫ Co-development of hardware design and inference 
library in a simulated environment with co-simulation of 
accelerator design

▫ Testing of runtime implementations on various platforms 
to check for hardware coverage

Optimization and deployment of NN for IoT / Kenning



https://docs.google.com/file/d/1L-ftk_zgHlqkBU5K0yhs7TrZ9noYx8Sk/preview
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LOOKING FOR INTERNS

• Engineering internships

▫ ASIC/SoC Design

▫ Digital design/FPGA 

▫ Hardware design 

▫ Software

▫ AI

▫ C# 

▫ C / Rust 

▫ Cloud 

▫ Backend

▫ Frontend
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ENGINEERING INTERNSHIPS

https://careers.antmicro.com/jobs/

Full list on our careers website

Optimization and deployment of NN for IoT / Engineering internships
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